Interspecies transformation in Bacillus: sequence heterology as the major barrier.
نویسندگان
چکیده
The relative contribution of DNA restriction and of sequence heterology as barriers to interspecies transfer of DNA was studied in the heterologous transformation of Bacillus subtilis recipients by DNA was studied in the heterologous transformation of Bacillus subtilis recipients by DNA isolated from B. globigii. Transformants were obtained at very low frequencies in the evolutionarily nonconserved aromatic region; high cotransfer of linked markers was observed. New mutations were introduced into the B. globigii intergenote sequence in the resulting hybrids; these markers could be transformed with high efficiency by both B. globigii and B. subtilis DNA, representing a 10(5)-fold increase in heterologous transforming efficiency. A restriction activity in B. globigii crude extracts inactivated the biological activity of B. subtilis and hybrid DNA but not B. globigii DNA in vitro, demonstrating different sites for restriction and modification between these species. In vivo, however, B. globigii and hybrid DNA transformed the B. globigii sequence in a hybrid recipient with the same efficiency. These results show that sequence heterology is the major barrier to interspecies transformation and that, in this system, enzymatic restriction does not prevent interspecies transformation.
منابع مشابه
Branch migration through DNA sequence heterology.
Branch migration of a DNA Holliday junction is a key step in genetic recombination. Previously, it was shown that a single base-pair heterology between two otherwise identical DNA sequences is a substantial barrier to passage of a Holliday junction during spontaneous branch migration. Here, we exploit this inhibitory effect of sequence heterology to estimate the step size of branch migration. W...
متن کاملDNA sequence similarity requirements for interspecific recombination in Bacillus.
Gene transfer in bacteria is notoriously promiscuous. Genetic material is known to be transferred between groups as distantly related as the Gram positives and Gram negatives. However, the frequency of homologous recombination decreases sharply with the level of relatedness between the donor and recipient. Several studies show that this sexual isolation is an exponential function of DNA sequenc...
متن کاملBarriers to genetic exchange between bacterial species: Streptococcus pneumoniae transformation.
Interspecies genetic exchange is an important evolutionary mechanism in bacteria. It allows rapid acquisition of novel functions by transmission of adaptive genes between related species. However, the frequency of homologous recombination between bacterial species decreases sharply with the extent of DNA sequence divergence between the donor and the recipient. In Bacillus and Escherichia, this ...
متن کاملChromosomal transformation in Bacillus subtilis is a non-polar recombination reaction
Natural chromosomal transformation is one of the primary driving forces of bacterial evolution. This reaction involves the recombination of the internalized linear single-stranded (ss) DNA with the homologous resident duplex via RecA-mediated integration in concert with SsbA and DprA or RecO. We show that sequence divergence prevents Bacillus subtilis chromosomal transformation in a log-linear ...
متن کاملRecA protein-facilitated DNA strand breaks. A mechanism for bypassing DNA structural barriers during strand exchange.
RecA protein promotes an unexpectedly efficient DNA strand exchange between circular single-stranded DNA and duplex DNAs containing short (50-400-base pair) heterologous sequences at the 5' (initiating) end. The major mechanism by which this topological barrier is bypassed involves DNA strand breakage. Breakage is both strand and position specific, occurring almost exclusively in the displaced ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of bacteriology
دوره 133 3 شماره
صفحات -
تاریخ انتشار 1978